If it's not what You are looking for type in the equation solver your own equation and let us solve it.
1400=2x^2-200x
We move all terms to the left:
1400-(2x^2-200x)=0
We get rid of parentheses
-2x^2+200x+1400=0
a = -2; b = 200; c = +1400;
Δ = b2-4ac
Δ = 2002-4·(-2)·1400
Δ = 51200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{51200}=\sqrt{25600*2}=\sqrt{25600}*\sqrt{2}=160\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(200)-160\sqrt{2}}{2*-2}=\frac{-200-160\sqrt{2}}{-4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(200)+160\sqrt{2}}{2*-2}=\frac{-200+160\sqrt{2}}{-4} $
| 3/4+1/3=n-2/9 | | 3/8(x)+7=13 | | 5x-18+5x-18+5x-18=180 | | 6y+6=7y-2y | | -2(x+6)+3(2x-3)=2(x+2)-8 | | 10x+12=5x+5x+4+(-16) | | 7k^2+8k−5=0 | | 2(9x+3)=12 | | 7k2+8k−5=0 | | -3n(n+7)=-33-n | | 1(9x+3)=12 | | -7(7x-1)+4=-353 | | -n-14=-3(1+4n) | | 5.13(10)^2.3x=400 | | (x+8)/3+2=x+8 | | X-6=14-3x+ | | U+74;=u=2 | | 9=8v+v | | 5y-4=7+4y-12 | | -3(x-8+7x=12 | | 0=-2x+3=17 | | 3-7m=-6m | | 5(4b-5)-5=-6+8b | | 6x-15=4x-7 | | 13x=10x+21=90 | | 8(x+7)=-5x+4 | | -153x=4x-2x | | 3x-10=14+7x | | -2(x+3)-1=3 | | 3(k-5)=-23+5k | | 3x3-5x2=0 | | 45=5/9y |